Outcold Solutions LLC

Monitoring Kubernetes on Mesosphere DC/OS with Splunk Enterprise and Splunk Cloud

April 4, 2019

If you are using Kubernetes on Mesosphere DC/OS you can find that our default configuration does not provide all the metrics and the information out of the box. In this blog post we will guide you though all the configuration changes to get all the information you need to monitor the health of your clusters and performance of your applications.

We used Quickstart guide for Kubernetes on DC/OS on AWS as an example.

Fix for the cgroup filesystem

If you run the troubleshooting command verify on one of the collectorforkubernetes Pods you can find that it fails to find the cgroups for the Pods and Containers.

  Kubernetes configuration:
  + api: OK
  x pod cgroup: FAILED
    pods = 0 (with cgroup filter = ^/([^/\s]+/)*kubepods(\.slice)?/((kubepods-)?(burstable|besteffort)(\.slice)?/)?([^/]*)pod([0-9a-f]{32}|[0-9a-f\-_]{36})(\.slice)?$)
  x container cgroup: FAILED
    containers = 0 (with cgroup filter = ^/([^/\s]+/)*kubepods(\.slice)?/((kubepods-)?(burstable|besteffort)(\.slice)?/)?([^/]*)pod([0-9a-f]{32}|[0-9a-f\-_]{36})(\.slice)?/(docker-|crio-)?[0-9a-f]{64}(\.scope)?(\/.+)?$)
  + volumes root: OK
  + runtime: OK
    docker

This is because we mount the cgroup filesystem under /rootfs/sys/fs/cgroup and if you look at the different types of the cgroups

/rootfs/sys/fs/cgroup# ls -alh
total 0
drwxr-xr-x. 13 root root 340 Apr  3 22:48 .
drwxr-xr-x.  7 root root   0 Apr  3 22:48 ..
drwxr-xr-x.  3 root root   0 Apr  3 22:48 blkio
lrwxrwxrwx.  1 root root  26 Apr  3 22:48 cpu -> /sys/fs/cgroup/cpu,cpuacct
drwxr-xr-x.  3 root root   0 Apr  3 22:48 cpu,cpuacct
lrwxrwxrwx.  1 root root  26 Apr  3 22:48 cpuacct -> /sys/fs/cgroup/cpu,cpuacct

you'd realize that these links are broken. Cgroup cpu points to the /sys/fs/cgroup/cpu,cpuacct, when it should point to the /roofs/sys/fs/cgroup/cpu,cpuacct (or better ./cpu,cpuacct). To fix that you can mount cgroups inside of the container in our configuration differently. In both DaemonSets collectorforkubernetes and collectorforkubernetes-master change the volumeMounts from

        - name: cgroup
          mountPath: /rootfs/sys/fs/cgroup
          readOnly: true

To

        - name: cgroup-cpu
          mountPath: /rootfs/sys/fs/cgroup/cpu
          readOnly: true
        - name: cgroup-cpu
          mountPath: /rootfs/sys/fs/cgroup/cpuacct
          readOnly: true
        - name: cgroup-blkio
          mountPath: /rootfs/sys/fs/cgroup/blkio
          readOnly: true
        - name: cgroup-memory
          mountPath: /rootfs/sys/fs/cgroup/memory
          readOnly: true

And change the volumes from

     - name: cgroup
       hostPath:
         path: /sys/fs/cgroup

To

      - name: cgroup-cpu
        hostPath:
          path: /sys/fs/cgroup/cpu,cpuacct
      - name: cgroup-blkio
        hostPath:
          path: /sys/fs/cgroup/blkio
      - name: cgroup-memory
        hostPath:
          path: /sys/fs/cgroup/memory

After applying the change you can run the verify command again and should see that it fixed the problem

  Kubernetes configuration:
  + api: OK
  + pod cgroup: OK
    pods = 7
  + container cgroup: OK
    containers = 16
  + volumes root: OK
  + runtime: OK
    docker

Pods from DaemonSets collectorforkubernetes-master fail to start

If you see that Pods from the DaemonSet collectorforkubernetes-master fail to start with CrashLoopBackOff look at the events for this Pod with

kubectl describe pod --namespace collectorforkubernetes collectorforkubernetes-master-wbv62

If you will find something similar to

Events:
  Warning  Failed     2m33s (x4 over 3m20s)  kubelet, kube-control-plane-0-instance.devkubernetes01.mesos  Error: failed to start container "collectorforkubernetes": Error response from daemon: OCI runtime create failed: container_linux.go:337: starting container process caused "process_linux.go:403: container init caused \"process_linux.go:368: setting cgroup config for procHooks process caused \\\"failed to write 200000 to cpu.cfs_quota_us: write /sys/fs/cgroup/cpu,cpuacct/kubepods/burstable/pod2889c500-5665-11e9-a692-a6728d2eb688/collectorforkubernetes/cpu.cfs_quota_us: invalid argument\\\"\"": unknown

That means that the parent cgroup has a lower limit for the CPU, change the limits for the collectorforkubernetes-master DaemonSet to 1000m or 500m. In our case we see that the parent cgroup for the master pods has a cpu.cfs_quota_us equal to 160000 (1600m)

cat 7d57d61b-4c0f-4133-b658-bdfa902f67b2/cpu.cfs_quota_us
160000

After lowering the CPU, apply the configuration and you should see now that the Pods from the collectorforkubernetes-master are scheduled on the master nodes.

CoreDNS metrics

If you want to collect coredns metrics, just run the command to attach the annotation to tell Collectord to start forwarding metrics from coredns pods to Splunk

kubectl annotate deployment/coredns --namespace kube-system 'collectord.io/prometheus.1-path=/metrics' 'collectord.io/prometheus.1-port=9153' 'collectord.io/prometheus.1-source=coredns' --overwrite

CoreDNS

etcd metrics

To be able to monitor etcd cluster with our application Monitoring Kubernetes for Splunk Enterprise and Splunk Cloud you need to retrieve etcd certificates from the Kubernetes API pod, and modify the configuration of the collectorforkubernetes.yaml.

To retrieve the certificates from the Kubernetes API, just find the name of one of the Pods with kube-apiserver. And copy 3 files ca-crt.pem, kube-apiserver-crt.pem and kube-apiserver-key.pem

kubectl cp --namespace kube-system kube-apiserver-kube-control-plane-0-instance.devkubernetes01.mesos:/data/ca-crt.pem .
kubectl cp --namespace kube-system kube-apiserver-kube-control-plane-0-instance.devkubernetes01.mesos:/data/kube-apiserver-crt.pem .
kubectl cp --namespace kube-system kube-apiserver-kube-control-plane-0-instance.devkubernetes01.mesos:/data/kube-apiserver-key.pem .

Create a secret etcd-cert in the collectorforkubernetes namespace from just retrieved files

kubectl create secret generic --namespace collectorforkubernetes etcd-cert --from-file=./ca-crt.pem --from-file=./kube-apiserver-crt.pem --from-file=./kube-apiserver-key.pem

Now you need to modify the collectorforkubernetes.yaml configuration. At first find the stanza [input.prometheus::etcd] and disable it with disabled=true. We use this configuration when etcd is deployed on the master nodes.

In the ConfigMap, file 004-addon.conf add the following configuration for each etcd cluster member

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
    [input.prometheus::etcd-0]
    disabled = false
    type = kubernetes_prometheus
    index =
    host = etcd-0-peer.devkubernetes01
    source = etcd
    interval = 60s
    endpoint.https = https://etcd-0-peer.devkubernetes01.autoip.dcos.thisdcos.directory:2379/metrics
    tokenPath =
    certPath = /etcd-cert/ca-crt.pem
    clientCertPath = /etcd-cert/kube-apiserver-crt.pem
    clientKeyPath = /etcd-cert/kube-apiserver-key.pem
    insecure = false
    includeHelp = false
    output =

    [input.prometheus::etcd-1]
    disabled = false
    type = kubernetes_prometheus
    index =
    host = etcd-0-peer.devkubernetes01
    source = etcd
    interval = 60s
    endpoint.https = https://etcd-1-peer.devkubernetes01.autoip.dcos.thisdcos.directory:2379/metrics
    tokenPath =
    certPath = /etcd-cert/ca-crt.pem
    clientCertPath = /etcd-cert/kube-apiserver-crt.pem
    clientKeyPath = /etcd-cert/kube-apiserver-key.pem
    insecure = false
    includeHelp = false
    output =

    [input.prometheus::etcd-2]
    disabled = false
    type = kubernetes_prometheus
    index =
    host = etcd-0-peer.devkubernetes01
    source = etcd
    interval = 60s
    endpoint.https = https://etcd-2-peer.devkubernetes01.autoip.dcos.thisdcos.directory:2379/metrics
    tokenPath =
    certPath = /etcd-cert/ca-crt.pem
    clientCertPath = /etcd-cert/kube-apiserver-crt.pem
    clientKeyPath = /etcd-cert/kube-apiserver-key.pem
    insecure = false
    includeHelp = false
    output =

You can find the URLs of the etcd members in the configuration for the kube-apiserver

kubectl describe --namespace kube-system pod kube-apiserver-kube-control-plane-0-instance.devkubernetes01.mesos | grep etcd-servers
      --etcd-servers=https://etcd-0-peer.devkubernetes01.autoip.dcos.thisdcos.directory:2379

And the last step, mount the etcd-cert secret to the collectorforkubernetes-addon Deployment in the collectorforkubernetes.yaml

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
apiVersion: apps/v1
kind: Deployment
metadata:
  name: collectorforkubernetes-addon
  ...
spec:
  ...
  template:
    ...
    spec:
      ...
      containers:
      - name: collectorforkubernetes
      ...
      volumeMounts:
        ...
        - name: etcd-cert
          mountPath: /etcd-cert/
          readOnly: true
    volumes:
      ...
    - name: etcd-cert
      secret:
        secretName: etcd-cert

etcd

Now you have all the features of the Monitoring Kubernetes application, that will help you to monitor the health of the Kubernetes cluster and performance of your applications running on the Kubernetes clusters, deployed with Mesosphere DC/OS.

kubernetes, mesosphere, splunk

About Outcold Solutions

Outcold Solutions provides solutions for monitoring Kubernetes, OpenShift and Docker clusters in Splunk Enterprise and Splunk Cloud. We offer certified Splunk applications, which give you insights across all containers environments. We are helping businesses reduce complexity related to logging and monitoring by providing easy-to-use and deploy solutions for Linux and Windows containers. We deliver applications, which help developers monitor their applications and operators to keep their clusters healthy. With the power of Splunk Enterprise and Splunk Cloud, we offer one solution to help you keep all the metrics and logs in one place, allowing you to quickly address complex questions on container performance.